Error expansion for the discretization of Backward Stochastic Differential Equations - Laboratoire de Modélisation et de Calcul
Article Dans Une Revue Stochastic Processes and their Applications Année : 2007

Error expansion for the discretization of Backward Stochastic Differential Equations

Résumé

We study the error induced by the time discretization of a decoupled forward-backward stochastic differential equations $(X,Y,Z)$. The forward component $X$ is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme $X^N$ with $N$ time steps. The backward component is approximated by a backward scheme. Firstly, we prove that the errors $(Y^N-Y,Z^N-Z)$ measured in the strong $L_p$-sense ($p \geq 1$) are of order $N^{-1/2}$ (this generalizes the results by Zhang 2004). Secondly, an error expansion is derived: surprisingly, the first term is proportional to $X^N-X$ while residual terms are of order $N^{-1}$.
Fichier principal
Vignette du fichier
GobetLabartSPA.pdf (278.44 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00019463 , version 1 (22-02-2006)

Identifiants

Citer

Emmanuel Gobet, Céline Labart. Error expansion for the discretization of Backward Stochastic Differential Equations. Stochastic Processes and their Applications, 2007, 117 (7), pp.803-829. ⟨10.1016/j.spa.2006.10.007⟩. ⟨hal-00019463⟩
342 Consultations
187 Téléchargements

Altmetric

Partager

More