Identification of in-sample positivity violations using regression trees: The PoRT algorithm - l'unam - université nantes angers le mans
Article Dans Une Revue Journal of Causal Inference Année : 2023

Identification of in-sample positivity violations using regression trees: The PoRT algorithm

Résumé

Background The positivity assumption is crucial when drawing causal inferences from observational studies, but it is often overlooked in practice. A violation of positivity occurs when the sample contains a subgroup of individuals with an extreme relative frequency of experiencing one of the levels of exposure. To correctly estimate the causal effect, we must identify such individuals. For this purpose, we suggest a regression tree-based algorithm. Development Based on a succession of regression trees, the algorithm searches for combinations of covariate levels that result in subgroups of individuals with a low (un)exposed relative frequency. Application We applied the algorithm by reanalyzing four recently published medical studies. We identified the two violations of the positivity reported by the authors. In addition, we identified ten subgroups with a suspicion of violation. Conclusions The PoRT algorithm helps to detect in-sample positivity violations in causal studies. We implemented the algorithm in the R package RISCA to facilitate its use.
Fichier principal
Vignette du fichier
10.1515_jci-2022-0032.pdf (983.59 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04794872 , version 1 (21-11-2024)

Licence

Identifiants

Citer

Gabriel Danelian, Yohann Foucher, Maxime Léger, Florent Le Borgne, Arthur Chatton. Identification of in-sample positivity violations using regression trees: The PoRT algorithm. Journal of Causal Inference, 2023, 11 (1), ⟨10.1515/jci-2022-0032⟩. ⟨hal-04794872⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More