Chargement de la vidéo...

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Partager

Lien
Intégrer la vidéo

Métriques

Consultations de la notice

7

Téléchargements de fichiers

22

Analyses

AAR Campus Archives Audiovisuelles de la Recherche (Campus AAR) est une plateforme communautaire destinée à l'analyse, la documentation la mise en valeur, et la publication de corpus audiovisuels numériques archivés sur MédiHal.

Data-Model Fusion Approach in Global Change Research: Recent Development and Future Challenges.New Methodologies and Interdisciplinary Approaches in Global Change Research (International Symposium, Porquerolles, France 2008).

2008-11-06

Description : It is increasingly recognized that global change research requires methods and strategies for combing process models and data in systematic ways. This is leading to research towards the application of model-data fusion approach. The model-data fusion is a new quantitative approach to model analysis and data assimilation that provides a high level of empirical constraint over model predictions based on observations. Applications of model-data fusion require (a) a model that describes the underlying physical, chemical and biological processes, (b) experimental observations and (c) an optimization tool. The optimization tool is used to find optimal estimates of model parameters or states by minimizing the differences between model predictions and experimental observations. Finding the optimal parameters can help us improve predictions or test alternative hypotheses embedded in the models. Model-data fusion can be used in several different ways: to estimate parameter values or in a sensitivity study that can be used to identify the observations required to estimate model parameters or to test our hypotheses. In this paper, we will review recent applications of model-data fusion in global ecology and paleoecology studies and highlight current progress and issues, potential problems and future challenges.


https://hal.campus-aar.fr/medihal-01918306
Contributeur : Peter Stockinger <>
Soumis le : samedi 10 novembre 2018 - 16:15:45
Dernière modification le : mardi 20 août 2019 - 17:12:51